27 research outputs found

    Statistically Motivated Second Order Pooling

    Get PDF
    Second-order pooling, a.k.a.~bilinear pooling, has proven effective for deep learning based visual recognition. However, the resulting second-order networks yield a final representation that is orders of magnitude larger than that of standard, first-order ones, making them memory-intensive and cumbersome to deploy. Here, we introduce a general, parametric compression strategy that can produce more compact representations than existing compression techniques, yet outperform both compressed and uncompressed second-order models. Our approach is motivated by a statistical analysis of the network's activations, relying on operations that lead to a Gaussian-distributed final representation, as inherently used by first-order deep networks. As evidenced by our experiments, this lets us outperform the state-of-the-art first-order and second-order models on several benchmark recognition datasets.Comment: Accepted to ECCV 2018. Camera ready version. 14 page, 5 figures, 3 table

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extracellular signal-regulated kinase-1 and 2 (ERK1/2) proteins play an important role in cancer cell proliferation and survival. ERK1/2 proteins also are important for normal cell functions. Thus, anti-cancer therapies that block all ERK1/2 signaling may result in undesirable toxicity to normal cells. As an alternative, we have used computational and biological approaches to identify low-molecular weight compounds that have the potential to interact with unique ERK1/2 docking sites and selectively inhibit interactions with substrates involved in promoting cell proliferation.</p> <p>Methods</p> <p>Colony formation and water soluble tetrazolium salt (WST) assays were used to determine the effects of test compounds on cell proliferation. Changes in phosphorylation and protein expression in response to test compound treatment were examined by immunoblotting and <it>in vitro </it>kinase assays. Apoptosis was determined with immunoblotting and caspase activity assays.</p> <p>Results</p> <p><it>In silico </it>modeling was used to identify compounds that were structurally similar to a previously identified parent compound, called <b>76</b>. From this screen, several compounds, termed <b>76.2</b>, <b>76.3</b>, and <b>76.4 </b>sharing a common thiazolidinedione core with an aminoethyl side group, inhibited proliferation and induced apoptosis of HeLa cells. However, the active compounds were less effective in inhibiting proliferation or inducing apoptosis in non-transformed epithelial cells. Induction of HeLa cell apoptosis appeared to be through intrinsic mechanisms involving caspase-9 activation and decreased phosphorylation of the pro-apoptotic Bad protein. Cell-based and <it>in vitro </it>kinase assays indicated that compounds <b>76.3 </b>and <b>76.4 </b>directly inhibited ERK-mediated phosphorylation of caspase-9 and the p90Rsk-1 kinase, which phosphorylates and inhibits Bad, more effectively than the parent compound <b>76</b>. Further examination of the test compound's mechanism of action showed little effects on related MAP kinases or other cell survival proteins.</p> <p>Conclusion</p> <p>These findings support the identification of a class of ERK-targeted molecules that can induce apoptosis in transformed cells by inhibiting ERK-mediated phosphorylation and inactivation of pro-apoptotic proteins.</p

    Pre-Clinical Evaluation of a Novel Nanoemulsion-Based Hepatitis B Mucosal Vaccine

    Get PDF
    Hepatitis B virus infection remains an important global health concern despite the availability of safe and effective prophylactic vaccines. Limitations to these vaccines include requirement for refrigeration and three immunizations thereby restricting use in the developing world. A new nasal hepatitis B vaccine composed of recombinant hepatitis B surface antigen (HBsAg) in a novel nanoemulsion (NE) adjuvant (HBsAg-NE) could be effective with fewer administrations.Physical characterization indicated that HBsAg-NE consists of uniform lipid droplets (349+/-17 nm) associated with HBsAg through electrostatic and hydrophobic interactions. Immunogenicity of HBsAg-NE vaccine was evaluated in mice, rats and guinea pigs. Animals immunized intranasally developed robust and sustained systemic IgG, mucosal IgA and strong antigen-specific cellular immune responses. Serum IgG reached > or = 10(6) titers and was comparable to intramuscular vaccination with alum-adjuvanted vaccine (HBsAg-Alu). Normalization showed that HBsAg-NE vaccination correlates with a protective immunity equivalent or greater than 1000 IU/ml. Th1 polarized immune response was indicated by IFN-gamma and TNF-alpha cytokine production and elevated levels of IgG(2) subclass of HBsAg-specific antibodies. The vaccine retains full immunogenicity for a year at 4 degrees C, 6 months at 25 degrees C and 6 weeks at 40 degrees C. Comprehensive pre-clinical toxicology evaluation demonstrated that HBsAg-NE vaccine is safe and well tolerated in multiple animal models.Our results suggest that needle-free nasal immunization with HBsAg-NE could be a safe and effective hepatitis B vaccine, or provide an alternative booster administration for the parenteral hepatitis B vaccines. This vaccine induces a Th1 associated cellular immunity and also may provide therapeutic benefit to patients with chronic hepatitis B infection who lack cellular immune responses to adequately control viral replication. Long-term stability of this vaccine formulation at elevated temperatures suggests a direct advantage in the field, since potential excursions from cold chain maintenance could be tolerated without a loss in therapeutic efficacy

    Seroprevalence of Human Hydatidosis Using ELISA Method in Qom Province, Central Iran

    No full text
    Background: The objective of this study was to determine the prevalence of cystic echinococcosis (CE) in Qom Province, central Iran using ELISA test. Methods: Overall, 1564 serum samples (800 males and 764 females) were collected from selected subjects by randomized cluster sampling in 2011-2012. Sera were analyzed by ELISA test using AgB. Before sampling, a questionnaire was filled out for each case. Data were analyzed using Chi-square test and multivariate logistic regression for risk factors analysis. Results: Seropositivity was 1.6% (25 cases). Males (2.2%) showed significantly more positivity than females (0.9%) (P= 0.03). There was no significant association between CE seropositivity and age group, occupation, and region. Age group of 30-60 years encompassed the highest rate of positivity. The seropositivity of CE was 2.1% and 1.2% for urban and rural cases respectively. Binary logistic regression showed that males were 2.5 times at higher risk for infection than females. Conclusion: Although seroprevalence of CE is relatively low in Qom Province, yet due to the impor­tance of the disease, all preventive measures should be taken into consideration

    Action Recognition in Realistic Sports Videos

    No full text
    The ability to analyze the actions which occur in a video is essential for automatic understanding of sports. Action localization and recognition in videos are two main research topics in this context. In this chapter, we provide a detailed study of the prominent methods devised for these two tasks which yield superior results for sports videos.We adopt UCF Sports, which is a dataset of realistic sports videos collected from broadcast television channels, as our evaluation benchmark. First, we present an overview of UCF Sports along with comprehensive statistics of the techniques tested on this dataset as well as the evolution of their performance over time. To provide further details about the existing action recognition methods in this area, we decompose the action recognition framework into three main steps of feature extraction, dictionary learning to represent a video, and classification; we overview several successful techniques for each of these steps. We also overview the problem of spatio-temporal localization of actions and argue that, in general, it manifests a more challenging problem compared to action recognition. We study several recent methods for action localizationwhich have shown promising results on sports videos. Finally, we discuss a number of forward-thinking insights drawn from overviewing the action recognition and localization methods. In particular, we argue that performing the recognition on temporally untrimmed videos and attempting to describe an action, instead of conducting a forced-choice classification, are essential for analyzing the human actions in a realistic environment

    Biconvex Relaxation for Semidefinite Programming in Computer Vision

    No full text
    Semidefinite programming (SDP) is an indispensable tool in computer vision, but general-purpose solvers for SDPs are often too slow and memory intensive for large-scale problems. Our framework, referred to as biconvex relaxation (BCR), transforms an SDP consisting of PSD constraint matrices into a specific biconvex optimization problem, which can then be approximately solved in the original, low-dimensional variable space at low complexity. The resulting problem is solved using an efficient alternating minimization (AM) procedure. Since AM has the potential to get stuck in local minima, we propose a general initialization scheme that enables BCR to start close to a global optimum---this is key for BCR to quickly converge to optimal or near-optimal solutions. We showcase the efficacy of our approach on three applications in computer vision, namely segmentation, co-segmentation, and manifold metric learning. BCR achieves solution quality comparable to state-of-the-art SDP methods with speedups between 4x and 35x.ISSN:0302-9743ISSN:1611-334
    corecore